Findings (cont.)

Behavior Management System data can be provided by a children’s home located in Honduras, Central America. The children’s home provides education, health care, and a family-style environment to up to 50 children and youth, 3-21 years old.

Findings

- **Boys** were significantly more likely to exhibit high-risk behaviors than **girls**.
- **Girls** were significantly more likely to exhibit high-risk behaviors than **boys**.
- **Children’s ratings improved over time**.
- **Approximately 180,000 children live in orphanages in Honduras**.
- **Children who come into the care of orphanages often have complex mental health and emotional needs and may present behavioral problems that are challenging to address, especially given limited resources and shortage of clinical staff available**.
- **Data was separated into three 6-month periods in order to observe changes over time**.
- **Measurement**
 - Secondary-data analysis
 - Children’s behavior on each item was rated on a scale of 1 (lowest) - 5 (highest)
 - Average weekly point ratings on 20 different ratable goals were calculated, i.e., remaining supervised, honesty, respecting physical limits, and doing homework.
 - A note was made in the weekly data indicating significant incidents of “high-risk” behavior.
- **Reliability** was high, \(\alpha = .987 \)

Table 1. Gender (N = 33)

<table>
<thead>
<tr>
<th>Gender</th>
<th>N</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>17</td>
<td>51.5%</td>
</tr>
<tr>
<td>Female</td>
<td>16</td>
<td>48.5%</td>
</tr>
<tr>
<td>Total</td>
<td>33</td>
<td>100%</td>
</tr>
</tbody>
</table>

Table 2. Age (N = 33)

<table>
<thead>
<tr>
<th>Age</th>
<th>N</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-11 years</td>
<td>12</td>
<td>36.4%</td>
</tr>
<tr>
<td>12-14 years</td>
<td>10</td>
<td>30.3%</td>
</tr>
<tr>
<td>15-18 years</td>
<td>11</td>
<td>33.3%</td>
</tr>
<tr>
<td>Total</td>
<td>33</td>
<td>100%</td>
</tr>
</tbody>
</table>

Table 3. Mean of High-Risk Behaviors by Gender (N = 33)

<table>
<thead>
<tr>
<th>Boys (n = 16)</th>
<th>Girls (n = 17)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of High-Risk Behaviors</td>
<td>M = 4.94, SD = 6.31</td>
</tr>
</tbody>
</table>

Pearson’s Correlation (r):

- **Parental Authority**: Pearson correlation = 0.795
- **Other**: Pearson correlation = 0.847
- **Respect Authority**: Pearson correlation = 0.799
- **Running Away**: Pearson correlation = 0.803
- **Serious Verbal Aggression**: Pearson correlation = 0.803
- **Serious Physical Aggression**: Pearson correlation = 0.803
- **Other**: Pearson correlation = 0.803
- **Inappropriate Contact**: Pearson correlation = 0.803
- **Other**: Pearson correlation = 0.803

Discussion

- Children’s ratings improved over time.
- The greatest improvements were in respecting authority and work ethic.
- Ratings generally worsened before they improved. Number of high-risk behaviors followed the same pattern.
- Majority of high-risk behaviors were physical and verbal aggression.
- There were no incidents of running away or breaking a safety contract.
- High-Risk behaviors were negatively correlated with ratings on all goals, particularly work, punctuality, respecting authority, and respecting physical limits.
- Boys were significantly more likely to have high-risk behaviors than girls.
- Pattern is consistent with the literature on the adaptation or implementation of a behavior management system data as a tool for measuring children’s progress and assessing their risk for unsafe behaviors.

Implications

- Behavior Management System data can be used as a tool to evaluate progress and assess risk among children and youth.
- Findings on behavioral patterns can be shared with agencies and group-care settings.
- Information can be used to inform interventions and target prevalent high-risk behaviors.
- Behavior Management Systems can be adapted for use in a variety of settings across cultures.

Acknowledgements

Many thanks to the administration, staff, and kids at the Honduran children’s home for your collaboration, and to Professor Marina Lalayants, PhD, for your guidance and support.